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Abstract 

It has long been recognized that the standard error of measurement (SEM) varies across score 

levels. Although SEMs conditioned on score level better caution score interpretations than a 

common SEM for all test takers, examinees with the same total score may have quite different 

SEMs. In this paper, we propose a general method for estimating SEMs for individual examinees 

for tests that have been scaled using Item Response theory (IRT). We then show how two variants 

of this procedure can be used to caution the scores of examinees whose patterns of item and subtest 

scores differ from the patterns expected when a unidimensional IRT model fits the data. The two 

variants are compared to estimates of SEM derived from generalizability theory and from classical 

test theory. The procedures are then illustrated using standardization data from Form 5 of the 

Cognitive Abilities Test (CogAT; Thorndike & Hagen, 1993). 
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Background 

It has long been recognized that the standard error of measurement (SEM) is not the same 

for all examinees. Raw score SEMs are larger for scores near the mean than for extreme scores. 

Scale score SEMs typically show the opposite profile, although the pattern depends on the 

relationship between raw scores and scale scores (Brennan & Lee, 1999; Lee, Brennan, & Kolen, 

2000). If SEMs vary across score levels, then one should not be equally confident in all scores on a 

test. Further, if SEM varies, then one cannot use a simple rule for deciding whether differences 

among subtest scores on a test battery are sufficiently large to warrant interpretation. 

Interest in standard errors of measurement that are conditioned on score level— 

conditional standard errors of measurement (CSEMs)—has grown because of recommendations 

that test publishers report them (Joint Committee on Standards, 1999) and because of advances in 

methods for estimating CSEMs both for raw scores and for the scale scores typically reported to 

examinees (Brennan & Lee, 1999; Feldt, 1984; Feldt, Steffen, & Gupta, 1985; Kolen, Zeng, & 

Hanson, 1996; Lee, Brennan, & Kolen, 2000; Lord, 1984; Woodruff, 1990). 

Although SEMs conditioned on score level better caution score interpretations than a 

common SEM for all test takers, examinees with the same total correct score may have quite 

different SEMs. Indeed, in an IRT framework, conditional standard errors can be understood as the 

expected value of the error distribution at a given ability level. Some examinees show somewhat 

smaller errors; others show larger errors. However, as Jarjoura (1986) observed: “The question 

of...[estimation] of measurement error for a particular examinee has not been studied to the same 

degree as average measurement error” (p. 175). He added that it is intuitively recognized that “an 

examinee-level error should result in larger error variance for an examinee who does much 

guessing than for one who does not (given both have the same true score).” Others have noted that 
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examinees vary in consistency. Some are consistently inconsistent; others are more consistently 

consistent in their behavior (Birdie, 1969). Jarjoura (1986) developed an estimator for 

examinee-level error using the framework of generalizability theory. The goal of this paper is to 

develop estimators for examinee-level error using the framework of item response theory (IRT). 

Two variants of an IRT-based SEM will be established for individual examinees. One variant 

gives estimates that are similar to the Jarjoura examinee-level error variance. The other estimate 

compares favorably with an even earlier SEM suggested by Thorndike (1951). The procedures 

developed here are illustrated using data from Form 5 of the Cognitive Abilities Test (CogAT; 

Thorndike & Hagen, 1993). 

Item-level PSEM 

For the three-parameter logistic IRT model (3PL), the probability that examinees at a 

specific ability level, , answer item i correctly is defined as, 

,
)](7.1exp[1

1
)1Prob

i
b

i
a

i
c

i
c|θ

i
(x

i
p







    i = 1, 2, …, n,                  (1) 

where   xi  is the observed response to item i, 

ai    is the discrimination parameter for item i, 

bi    is the difficulty parameter for item i, 

ci    is the guessing parameter for item i, 

n     is the total number of items administered to the person. 

The 2PL model fixes the ci parameters to zero for all items and the 1PL model further fixes the ai 

parameters for all items.  Only estimates of both item and examinee ability parameters are 

available in practice.  Here it is assumed that the maximum likelihood method is used to estimate 

examinee’s ability scores using item pattern scoring.  The true score of examinees with an ability 

estimate of   is here defined as 
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 . The conditional error variance for examinees at a 

specific true score is defined as the expected value of the error distribution at a given true score, , 
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which is equal to the variance of the distribution of the total-correct scores at a given ability level, 

  (Lord, 1980, p. 46). That is, 
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where x is the observed total-correct score, and qi = 1- pi. 

However, there are other ways to interpret the IRT conditional error variance. One way is 

to consider the IRT conditional error variance as the error variability in estimating an examinee’s 

scores on individual items. That is, 
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 Equation 3 says that the IRT error variance is the expected value of the discrepancy between 

observed and predicted performance over all possible item score patterns that can be demonstrated 

by an examinee at a specific ability level. Hence, the IRT error variance represents the estimated 

error variance for a typical examinee at a specific ability level. Indeed, although it is highly 

improbable, a high ability examinee could respond incorrectly to all test items (total-correct score 

of zero). In general, even though examinees at a specific ability level can theoretically demonstrate 

any item score pattern, they are more likely to demonstrate certain item score patterns than other 

score patterns (Brennan & Lee, 1999). 

Moreover, two examinees who have the same estimated ability level or true score but have 

different item score patterns could demonstrate different measurement error. For example, a low 

ability examinee who responds correctly to difficult items has a score with larger error variability 

on that measurement occasion than another examinee at the same ability level who responds to 

items in a manner that conforms to the expectations of the measurement model. Therefore, on any 

particular measurement occasion, some examinees show somewhat smaller errors, whereas others 
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at the same ability level show much larger errors. However, Equations 2 and 3 imply that these two 

examinees have the same error variability because they have the same ability level.  The 

magnitude of this estimated error depends on the particular scaling model and scoring rules that 

are used.  Changing either the scaling model (e.g., from 2PL to 3PL) or the scoring rule (e.g., from 

number correct to item pattern scoring) can change the estimated IRT SEM (Yen & Candell , 

1991).  Regardless of the magnitude of this estimate, however, it will be the same for all examinees 

who have the same estimated ability level. Because the IRT SEM reports only the expected error at 

each theta or true score, it treats as equivalent error variablities that we know are not equal.   

The locus of these differences in error variabilities for persons at the same ability level is 

shown in Equation 3.  The term in brackets in Equation 3 differs from one item score pattern to 

another.  Some item score patterns will have larger values of that term, whereas others will have 

smaller values. This term can be used as an estimator of examinee-level or personal error variance 

based on an examinee a’s observed item score pattern at a given test administration. This personal 

error variance is most appropriate when the focus of the measurement is over examinee’s scores on 

individual items. We call this the item-level personal error variance because it is based on 

examinee a’s observed item scores, 
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where xai is the observed item i score for an examinee, a. The square root of the error variance in 

Equation 4 is the estimate of the item-level personal SEM (item-level PSEM). 

Subtest-level PSEM 

The examinee-level error variance in Equation 4 was established for those cases in which 

an examinee’s scores on individual items are the focus of measurement. However, there are times 

when the focus of measurement is on examinee’s total scores across groups of items, i.e., subtests. 
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Examples of possible subtests are content and format categories. For example, ability tests such as 

the SAT or the GRE present blocks of items in a common format such as sentence completions or 

analogies. The scores of examinees who show markedly different performance on different item 

types are not as dependable as those examinees who show approximately similar performance on 

these different item types. For such examinees, we are interested in estimating the conditional 

error variability associated with the examinee’s scores across various subtests on the test. The 

examinee-level error variance in Equation 4 captures this type of error variability only indirectly. 

The IRT error variance in Equation 2 can also be interpreted as the error variability in 

estimating the examinee’s scores on various subtests, j, of the test. That is, 
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      is the expected score on subtest j, which is the sum of the     

       probabilities of correct responses to the nj items of the subtest j, and 

J      is the total number of subtests. 

Equation 5 shows that the IRT error variance is the expected value of the error over all possible 

subtest score patterns that can be demonstrated by an examinee at a specific ability level. However, 

the IRT error variance in Equation 2 cannot reveal the differences among examinees at the same 

ability level or true score when they have different subtest score patterns. It is expected that the 

examinee is more likely to demonstrate certain subtest score patterns more than others, although 

examinees at a specific ability level can theoretically demonstrate any subtest score patterns. 

The term in brackets in Equation 5 differs from one subtest score pattern to another. Some 
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subtest score patterns will have larger values of that term, whereas others will have smaller values. 

Hence, this term can be used as an estimator of examinee-level or personal error variance based on 

the examinee’s observed subtest score pattern at a given test administration. Because this error 

variance uses an examinee a’s scores on various subtests of the test, it will be referred to as 

subtest-level personal error variance,  
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where xaj is the observed subtest j score for an examinee, a. The square root of the error variance in 

Equation 6 is the estimate of the subtest-level personal SEM (subtest-level PSEM). 

Interpretation of Personal Error Variance 

Examinees with large item-level PSEMs need not have large subtest-level PSEMs. In fact 

an examinee could have an estimate of the subtest-level PSEM that is less than, equal to, or larger 

than the estimate of the item-level PSEM. For example, examinees can have total-correct scores on 

subtests that are close to the expectations of the model, whereas their item scores within each 

subtest do not correspond to the expectations of the model. Such examinees would show 

subtest-level PSEMs that are smaller than item-level PSEMs. 

When one or both of the observed error estimates for an individual are significantly larger 

than the error expected under the assumption of random disturbances, then we can reject the 

hypothesis that all disturbances were random events. Rather, such individuals may have 

systematic errors in their test scores. Some individuals, on the other hand, will obtain error 

estimates that are much smaller than the average error. These are individuals who, on this testing 

occasion, exhibited behavior that was unusually consistent across items or subtests. A smaller than 

expected PSEM may even reflect a general consistency in behavior on the tasks in question 
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(Birdie, 1969). 

Relationships with Estimates of Conditional SEM in Classical Test Theory 

The two variants of personal standard error proposed here bear obvious similarities with 

Jarjoura’s (1986) examinee-level SEM in generalizabiilty theory, and with the Lord (1955, 1965) 

and Thorndike (1951) SEMs in the context of classical test theory. Understanding the similarities 

and differences between these models illuminates the advantages and limitations of each. We first 

outline these estimates and then relate each to the corresponding personal standard error that we 

propose. 

Jarjoura’s SEM. Jarjoura (1986) proposed an examinee-level error variance conditioned 

on examinee’s true score, a  . Jarjoura’s SEM adjusts for the mean difficulty of items (mean 

proportion correct) on a particular test form. Jarjoura’s examinee-level error variance for mean 

adjusted scores is defined as follows: 
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The biased
1
 estimator of the examinee-level error variance conditioned on estimated examinee’s 

true score, ax̂  (examinee’s proportion-correct score) is, 





n

i

x
i

x
a

x
ai

x
Jarjoura

1

2)(2̂  (8) 

where n
ai

xx
i

a /    is the mean observed score for examinee a over test items and is the  



 10 

analog of a, 

A
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x /    is the mean of the observed scores for item i over A examinees taking the  

  test and is the analog for i, 

nA

ai
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xx /   is the mean of the observed scores over both the sample of examinees and the 

sample of test items and is the analog of . 

Jarjoura’s estimate of examinee-level error variance is known also as the conditional relative error 

variance in the framework of generalizability theory (Brennan, 2001). Brennan (1998) argued that 

this estimate of conditional relative error variance (Equation 8) is valid when the sample size of 

examinees administered the test form is large. 

Jarjoura’s examinee-level error variance adjusts the examinee’s item scores for the 

estimated mean item difficulty on the test.  This estimate is based on the responses of the sample of 

examinees who were administered the test.  This adjustment for the item mean difficulty is the 

same for all examinees. Jarjoura (1986) recognized the need to make different adjustments to 

examinees’ item scores for test difficulty that would vary along the ability score scale. However, 

this is not easily done in generalizability theory. In the IRT framework, the probability of a correct 

response, pi, provides an estimate of item difficulty that varies along the ability score scale. The pi 

in the IRT model can be interpreted as the probability of a correct response to item i for a group of 

examinees at the same ability level (Hambleton & Swaminathan, 1985). For dichotomously scored 

items, pi gives the item i mean score (mean difficulty) over examinees at the same ability level as 

examinee a, and can be considered as an IRT analogue of i. Because ni i
ppa /  gives the 

examinee a’s proportion-correct true score (Hambleton & Swaminathan, 1985; Lord, 1980), ap  

can be interpreted as an IRT analogue of a. Also, ni i
ppa / can be interpreted as an IRT 
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analogue of , since ni ii
i
E /  . If we substitute these terms in the right side of Equation 7, 

we get an estimate of an examinee-level error variance at an examinee level. This estimate is the 

same as the estimate of the proposed item-level personal error variance in Equation 4, 
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It can be seen that the proposed estimate of the item-level personal error variance in the 

IRT context is analogous to the Jarjoura’s estimate of examinee-level error variance in the 

generalizability theory. However, the IRT-based adjustment for test difficulty is believed to be 

more personalized for a given examinee than the adjustment for test difficulty estimated from the 

total sample of examinees of different ability levels who are administered the test form. However, 

it is expected that the average of both Jarjoura’s error variance and the item-level personal error 

variance will be similar when the sample size of examinees administered the test form is large. 

Lord’s SEM. Lord (1965) suggested an estimate of conditional error variance for an 

examinee at a given true score estimated by the examinee’s total-correct score, ax̂ , 

)1(ˆ 2
aaLord xxn  . 

The relationship between the item-level personal error variance and Lord’s error variance can be 

established from the relationship between the expected value of Jarjoura’s error variance and 

Lord’s error variance. Jarjoura (1986) demonstrated that 
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grand mean. If we replace the terms in Equation 9 with their corresponding terms in the IRT 

framework at examinee level, we get 
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Lord (1980) demonstrated that Equation 10 is equal to the IRT error variance (Equation 2). 

Therefore, the expected value of Jarjoura’s examinee-level error variance is equal to the expected 

value of the item-level personal error variance and, hence, equal to the IRT error variance. 

Moreover, this suggests that the IRT error variance is approximately equal to Lord’s error variance 

adjusted for variation in item difficulties. The IRT error variance will be always smaller than 

Lord’s error variance unless the test items have the same difficulty level. 

Thorndike’s SEM. Thorndike (1951) was among the first to propose a method for 

estimating conditional standard errors. He noted that error variance at different score levels could 

be estimated by taking the difference D between each examinee’s scores on two parallel tests, xa1 

and xa2. Thorndike showed that the variance of the difference scores D was equal to twice the 

conditional error variance. Given a sufficiently large sample, one can estimate the conditional 

error variance at each level of xa. More commonly, the observed total-correct score scale is divided 

into 8 to 10 intervals, and error variance is estimated for each score interval. 

Thorndike’s (1951) difference score procedure for estimating conditional error variance 

may be viewed as a special case of the more general method of computing a within-person error 

variance across J tau-equivalent test parts. Since test parts are assumed to be tau-equivalent, the 

expected score for each person is simply the mean across all test parts. The biased estimate of the 

Thorndike within-person error variance, here called 2ˆ
Thorndike , is 
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However, Thorndike’s within-person error variance is appropriate only if subtests have the same 

number of items. A modified expression can be suggested to estimate the within-person error 
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variance for subtests that are composed of a different number of items. The biased estimate of the 

modified within-person error variance, referred here as 2
.ˆ ThorndikeMod , is 
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If the subtests have the same number of items (nj = n/J), then Equation 12 reduces to Equation 11. 

The proposed subtest-level error variance has some similarities with Thorndike’s 

within-person error variance. Whereas the expected score for each person in Thorndike’s 

within-person error variance is the mean across all test parts, the expected score for each subtest in 

the proposed subtest-level error (Equation 6) is equal to the sum of the expected item scores for the 

items within the subtest.  Deviations are computed about this expected score for each subtest rather 

than from the mean observed score across all test parts. The difference between the proposed 

subtest-level personal error variance and the modified expression of Thorndike’s within-person 

error variance is that the proposed subtest-level personal error variance adjusts for examinee-level 

subtest difficulty, whereas the modified expression of the Thorndike within-person error variance 

does not. Therefore, the average subtest-level personal error variance is expected to be smaller 

than or equal to the modified expression of Thorndike’s within-person error variance. These two 

estimates will be approximately equal if the subtests have the same mean difficulty. 

The procedure Jarjoura (1986) used to obtain an examinee-level relative error variance can 

also be applied to the modified within-person error variance to adjust for subtest difficulty. 

Following the same process, the biased estimate of the relative modified within-person error 

variance is 
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The relative modified within-person error variance adjusts the subtest error variability for the 

differences in the mean difficulty of the subtests based on a sample of examinees of different 

abilities administered the test form. Similar to Jarjoura’s error variance (Equation 8), the estimate 

of the relative modified within-person error variance is valid when a large sample of examinees is 

administered the test form.  

If the IRT terms ( ap , pi, ap ) that are analogues to the three terms in Equation 8 ( ax , ix , x , 

respectively) are substituted in Equation 13, we get an estimate of the relative modified 

within-person error variance adjusted for subtest difficulty at an examinee-level in the IRT 

context.  
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This estimate is the same as the estimate of the proposed subtest-level personal error variance in 

Equation 6. Hence, the proposed subtest-level personal error variance is analogous to the modified 

Thorndike within-person error variance after adjusting for subtest difficulty at an examinee-level. 

Similar to the item-level personal error variance, the subtest-level personal error variance is 

believed to be more personalized for a given examinee than the relative modified within-person 

error variance. However, it is expected that the average of both the relative modified within-person 

error variance and the subtest-level personal error variance will give similar estimates of 

examinee’s error variability across subtest scores when the sample size of examinees administered 

the test form is large. 
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Applications 

Each of the estimates of conditional SEM reported here was computed for 12,242 students 

who were administered the CogAT Level A Verbal battery as part of test standardization. This 

level of the test was chosen because it is typically administered at grade 3. This is the lowest level 

of the test at which students must read items, pace themselves, and record their responses on a 

separate machine-readable answer sheet. One might reasonably expect more children at this age to 

show confusion about how to solve particular subtests or how to keep track of their place on the 

answer sheet. This level of the test thus offers a good test case for the utility of personal standard 

errors. The verbal score that is reported for each child is based on the sum of the scores across three 

subtests: 20 items appear in a verbal classification format, 20 items in a sentence completion 

format, and 25 items in a verbal analogy format. Descriptive statistics on item and subtest 

difficulty for Level A of the CogAT Verbal Battery are presented in Table 1. 

The estimations of item-level PSEM (square root of Equation 4) and subtest-level PSEM 

(square root of Equation 6) presume that the test has been scaled using any IRT model. Thorndike 

and Hagen (1992) used the Rasch model to scale the CogAT. We used this scaling, but also 

rescaled the test using 2PL and 3PL models for some analyses. Thetas for these models were 

estimated from examinees’ item score patterns using maximum likelihood.  

Results for the Item-level PSEM and Subtest-level PSEM 

Descriptive statistics for the item-level PSEMs, the subtest-level PSEMs, and the IRT 

SEM are presented in Table 2 for the 1PL, 2PL, and 3PL IRT models. The average conditional 

SEM for each model in this table is the square root of the average conditional error variance. 

Although the average estimated SEM was similar for all three IRT models, item-level and IRT 

SEMs showed the expected decline from the 1PL to 3PL models (see, e.g., Yen & Candell, 1991).  
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Average subtest-level PSEMs, on the other hand, showed a different pattern.  They were smallest 

for the 1PL model, but equal for two and 3PL models.  More importantly, the average of the 

item-level PSEM was approximately the same as the average of the IRT SEM, suggesting that the 

item-level PSEMs and the IRT SEM reflect similar sources of error.  However, the average of the 

subtest-level PSEM was substantially larger than the average of the IRT SEM, suggesting that 

cumulating item scores in this way provides a different perspective on error variability in the test 

battery. These hypotheses are examined in greater detail below. 

The top panel in Figure 1 shows the plots of item-level PSEMs and the IRT SEM for all 

examinees at each true score using 1PL, 2PL, and 3PL models. The bottom panel in Figure 1 

presents the corresponding plots for the subtest-level PSEMs and the IRT SEM.  (Note that scale 

of the vertical axis differs between the top and bottom plots. The lines representing the IRT SEM 

in the two plots would be identical if the scales of the vertical axes in the two plots were equal). 

Both the item-level PSEM and subtest-level PSEM showed more scatter at the middle of the true 

score scale than at the two ends of the scale. The subtest-level PSEM showed more scatter than the 

item-level PSEM at all true scores. For example, for the 2PL model, the values of the subtest-level 

PSEM ranged from 0.117 to 16.596, whereas the values of the item-level PSEM ranged from 

0.236 to 4.422 (see Table 2). 

The item-level PSEMs showed the typical inverted U shape in which SEMs are high in the 

middle of the total-correct score scale and low at both ends of the scale. On the other hand, 

subtest-level PSEMs did not show an inverted U shape. The minimum values of the subtest-level 

PSEM at each true score were about the same and close to zero over the entire score range. Unlike 

the item-level PSEM, it is possible that an examinee can have a subtest-level PSEM close to zero 

regardless of the true score of the examinee. This can happen when the examinee’s subtest scores 
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are close to the expectation of the subtest scores based on the model. Moreover, although the 

majority of the subtest-level PSEMs were moderate, there some were extremely high, especially in 

the middle of the score scale. 

For the 3PL model, the IRT SEM was the same for the subset of examinees who had true 

scores equal to sum of the guessing parameters for all test items regardless their total-correct score 

or which item response patterns they demonstrated.  However, the item-level PSEM gave different 

estimates for those examinees depending on their item score patterns. For this data set, these 

estimates were often smaller than the corresponding IRT SEM.  However, in principle, the 

item-level PSEM could give estimates of error that are larger than or equal to the corresponding 

IRT SEM for the 3PL model. Similarly, the subtest-level PSEM also gave estimates of error that 

differed from the IRT SEM for this group of examinees under the 3PL model. For this data set, 

some of these subtest-level PSEM estimates were smaller than the corresponding IRT SEMs 

whereas other estimates were larger.  

Correlations among estimates of conditional SEM for each of the three IRT models are 

presented in Table 3. These correlations confirmed previous results that showed only small 

differences among the three IRT models with respect to the patterns of both item-level and 

subtest-level PSEMs. Correlations for the item-level PSEMs were lowest for the 1PL-3PL 

comparison (r = 0.991) and highest for the 2PL-3PL comparison (r = 0.998). Although there were 

differences for some low-scoring examinees, it was clear that the item-level PSEM was least 

affected by the scaling model. Correlations among the three estimates of subtest-level PSEM were 

high, but not as high as for the item-level PSEM estimates. Once again, the lowest correlation was 

between PSEMs for the 1PL and 3PL models (r = 0.955), and the highest correlation was between 

PSEMs for the 2PL and 3PL models (r = 0.980). 
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Table 3 also presents the correlations among item-level PSEMs, subtest-level PSEMs, and 

IRT SEMs within each IRT model. The correlations between the item-level PSEMs and IRT SEM 

were high (0.932, 0.945, and 0.922 for 1PL, 2PL, and 3PL). However, the correlations of the 

subtest-level PSEM with the IRT SEM were low (0.391, 0.411, and 0.411 for 1PL, 2PL, and 3PL). 

The subtest-level PSEM also showed low correlations with the item-level SEM (0.429, 0.441, and 

0.433 for 1PL, 2PL, and 3PL).  Examination of the scatterplots of the item-level and subtest-level 

PSEMs for each model showed that violation of the assumption of linear relationship was not the 

cause of these low correlations. The scatterplots showed that while the subtest-level PSEMs were 

less scattered at low values of item-level PSEM, they were more scattered for large values of 

item-level PSEM. These patterns are expected given the relationships between SEMs and true 

scores shown in Figure 1. Figure 1 shows that the subtest-level PSEMs were more scattered than 

the item-level PSEMs at the middle of the true score scale where both item-level and subtest-level 

PSEMs were large. However, the subtest-level PSEMs were scattered approximately the same as 

the item-level PSEMs at both low and high true scores (where item-level and subtest-level PSEMs 

were small). These results indicate that the subtest-level PSEM and item-level PSEM give 

estimates of different types of measurement error even though their expected values are the IRT 

SEM. 

Previous results showed that the subtest-level PSEMs were more scattered than the 

item-level PSEMs. Moreover, the maximum values for the subtest-level PSEM (16.669 for 1PL) 

were much larger than the maximum values of the item-level PSEM (4.486 for 1PL). But does this 

imply that the subtest-level PSEM is generally larger than the item-level PSEM? Comparing the 

values of item-level PSEM and subtest-level PSEM for all individuals reveals that the item-level 

PSEM was actually greater than the subtest PSEM for 57.0, 54.3, and 54.6 percent of the cases in 
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the 1PL, 2PL, and 3PL models, respectively. In fact, in analyses on other data sets (not reported 

here), we have found that the item-level PSEM is greater than the subtest-level PSEM to the extent 

that the scaling model does not fit the data. Clearly, the subtest-level PSEM is as frequently 

smaller than the item-level PSEM as it is larger. On the other hand, the subtest-level procedure is 

believed to give a much more realistic estimate of the SEM for those cases in which subtest scores 

differ markedly from each other. For these examinees, the several subtests are clearly giving quite 

disparate estimates of the examinees’ ability. It would seem wise to caution these estimates with a 

larger SEM. 

Comparison with Estimates of Conditional SEM in Classical Test Theory 

Table 2 also presents summary statistics for the five estimates of conditional SEM that do 

not use IRT models. Again, the average conditional SEM is simply the square root of the average 

conditional error variances. Results showed that the average of the conditional relative SEM 

(Jarjoura’s SEM = 3.256) was approximately equal to the average of the item-level PSEM. The 

average of Lord’s SEM (3.497) was larger than the average of the conditional relative SEM 

(3.256) and the three item-level PSEMs by an amount related to the differences among item 

difficulty (3.497  [(3.256)
2
+1.6268]

1/2
 ), where 1.6268 is the sum of squares of the deviation of 

item difficulties from the grand mean for the 65 items on the test. On the other hand, the average of 

the relative modified Thorndike within-person SEM (square root of Equation 13, average = 3.791) 

was approximately equal to the average of the subtest-level PSEM.  However, the average of the 

modified Thorndike within-person SEM (square root of Equation 12, average = 3.942) was larger 

than the relative modified Thorndike within-person SEM and the average of the subtest-level 

PSEM because differences in average difficulty among the three subtests are considered error 

(3.942  [(3.791)
2
+1.1703]

1/2
 ). The average of the Thorndike within-person SEM was large 



 20 

(4.246) because of its inherent bias when subtests have different numbers of items.  

Figures 2 and 3 show the average of all estimates of SEM at each total-correct score, 

separately for each method of estimating SEM.  The IRT-based error estimates were also averaged 

at each total-correct score to facilitate the comparison with other error estimates in the classical test 

theory. Each of the three plots in Figure 2 presents the averages of all item-level SEMs, whereas 

each of the three plots in Figure 3 presents the averages of all subtest-level SEMs plus the IRT 

SEM. These plots are presented separately for the three IRT models. The three plots Figure 2 

reveal that the Lord binomial SEM was higher than all other estimates at most total-correct scores. 

This is because the Lord estimate assumes that the probability of a correct response is the same for 

all items.  Allowing the probability of a correct response to vary across items in the item-level 

PSEM and the IRT SEM resulted in lower standard errors. Adjusting for differences among item 

difficulties in the conditional relative SEM also resulted in lower standard errors. The averages of 

the item-level PSEMs and the conditional relative SEM showed a smoothed inverted U shape and 

were approximately the same as the averages of the IRT SEM. These three estimates of SEM 

coincided over most of the total-correct score scale for the 1PL and 2PL models. However, for the 

3PL model, the IRT SEM had higher values for individuals with low total-correct scores. For all 

three models, the item-level PSEM had smaller values than the conditional relative SEM at all 

total-correct scores. This was most apparent at both low and high total-correct scores. Unlike 

Lord’s SEM, the values of item-level PSEM and conditional relative SEM were larger than zero at 

the perfect score (0.077, 0.236, 0.130 for item-level PSEM with the 1PL, 2PL, and 3PL models, 

respectively, and 1.275 for the conditional relative SEM). Although no examinee obtained a zero 

score on the CogAT, it is expected that the value of the item-level PSEM would also be larger than 

zero for an examinee with zero total-correct score. 
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Table 3 shows that the correlations among the four estimates of item-level SEM were high. 

The pattern of the correlations among these four estimates of SEM reveals that the item-level 

PSEM correlated higher with the conditional relative SEM (r = 0.992, 0.989, 0.986, for 1PL, 2PL, 

3PL), whereas the IRT SEM correlated higher with Lord’s SEM (r = 0.998, 0.991, 0.970, for 1PL, 

2PL, 3PL). These correlations were higher for the 1PL model because of the one-to-one 

correspondence between the total-correct scores and ability values. The 2PL and 3PL models do 

not affect these correlations substantially, however. This pattern of correlations supports the 

correspondence between the item-level PSEM and the conditional relative SEM (Jarjoura’s SEM) 

and between the IRT SEM and Lord’s SEM (or more accurately between the IRT SEM and Lord’s 

SEM adjusted for the item difficulty). 

Plots for the subtest-level SEMs are shown in the three panels on the right side of Figure 2. 

These plots show that the subtest-level PSEM and the relative modified Thorndike within-person 

SEM coincided at all total-correct scores for the 1PL, 2PL, and 3PL models. However, the 

subtest-level PSEM for the 3PL model had higher values for individuals with low total-correct 

scores because of the ci parameter. Comparison of the plots for the item-level PSEM and 

subtest-level PSEM reveals that the subtest-level PSEM—unlike the item-level PSEM—was 

affected by the ci parameter. The modified Thorndike within-person SEM, where the differences 

in average difficulty among the three subtests are not removed and are considered error, was 

higher than the relative modified Thorndike within-person SEM in all three plots. This bias in the 

modified Thorndike within-person SEM was not substantial, however, because of the small 

differences among the mean subtest difficulties (see Table 1). 

The plots in Figure 2 also demonstrate the flaw in the Thorndike within-person SEM when 

subtests have different numbers of items (as the case with verbal CogAT data). The plots reveal 
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that the Thorndike within-person SEM had high values for individuals with high total-correct 

scores. As shown in the three plots, the modified Thorndike within-person SEM remedies this 

flaw. The averages of the four estimates of the subtest-level SEMs showed a bumpy inverted U 

shape. Moreover, all estimates of subtest-level SEM in the plots were higher than the IRT SEM for 

individuals with both low and medium total-correct scores. Again, these differences between the 

average of the subtest-level PSEM and the average of IRT SEM are not substantial given the scale 

of values of the subtest-level PSEM. However, this result could suggest also that there is a 

possibility of inconsistency between examinees’ subtest observed scores on CogAT and the 

expected subtest scores based on both the IRT models and the observed subtest means. 

With the exception of the Thorndike within-person SEM, the correlations among the four 

estimates of the subtest-level SEMs were high. The lower correlations of the Thorndike 

within-person SEM with other estimates were caused by the bias in this estimate when the 

numbers of items in the subtests are different. The relative modified Thorndike within-person 

SEM correlated (0.990, 0.986, 0.957 for 1PL, 2PL, 3PL) higher with the subtest-level PSEM than 

did the modified Thorndike within-person SEM (0.920, 0.913, 0.891 for 1PL, 2PL, 3PL). These 

correlations were higher with the 1PL models. However, the 2PL and 3PL scaling models reduced 

these correlations slightly. These correlations support the correspondence between the 

subtest-level PSEM and the relative modified Thorndike within-person SEM.  

The correlations among the estimates of item-level SEM (item-level PSEM, IRT SEM, 

Lord’s SEM, and conditional relative SEM) and the estimates of subtest-level SEM (subtest-level 

PSEM, modified Thorndike within-person SEM, relative modified Thorndike within-person 

SEM) presented in Table 3 were small (range between 0.379 and 0.441). These correlations 

suggest that the estimates of subtest-level SEM behave differently from the estimates of item-level 
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SEM. The item-level PSEM gives an estimator of item-based error that corresponds with the 

conditional relative SEM, whereas the subtest-level PSEM gives an estimator of error that 

corresponds most closely with the relative modified Thorndike within-person SEM. 

Discussion 

Psychologists have long been intrigued by the extent to which individuals differ in the 

consistency of their behavior. Some individuals are consistently inconsistent on repetitions of a 

task, whereas others show greater consistency in their performance (e.g., Berdie, 1969). Indeed, in 

their derivation of classical test theory, Lord and Novick (1968) explicitly allow for the possibility 

that “some persons’ responses are inherently more consistent than those of others, and that we are 

able to measure some persons’ responses more accurately than others” (p. 32). Nevertheless, errors 

of measurement are often assumed to be the same for all examinees or, more defensibly, for all 

examinees who obtain the same total-correct score. In this paper, two estimates of error of 

measurement for individual examinees are developed and illustrated. We call them personal 

standard errors of measurement (PSEMs) to distinguish them from more familiar conditional 

standard errors of measurement (CSEMs) or a common standard error of measurement (SEM). 

The first PSEM captures discrepancies between the observed pattern of item scores and the pattern 

predicted by a unidimensional IRT model. The second PSEM captures discrepancies between 

observed subtest scores and the subtest scores predicted by the IRT model. The subtest-level 

PSEM is particularly useful in detecting patterns of subtest scores that (for whatever reason) differ 

markedly from the patterns predicted by the scaling model. PSEMs vary over a wider range when 

estimated from subtest scores than when estimated from item scores. Importantly, these 

subtest-level PSEMs capture extreme variation in subtest scores. Operational testing programs 

may want to use one or both PSEM estimates. Test users who are interested in both estimates but 
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prefer to use one score that captures the advantages of both estimates could average the two 

estimates, or more conservatively, use the largest estimate for constructing confidence intervals 

around the total-correct scores for individual examinees.  

The item-level PSEM behaved in the same way as the examinee-level SEM developed by 

Jarjoura (1986) or the conditional relative SEM (Brennan, 2001). However, the item-level PSEM 

proposed here generally results in smaller estimates of examinees’ error variability. In the data set 

we examined here, 93 percent of individuals had values of the item-level PSEM (with the 1PL 

model) that were smaller than their values for the conditional relative SEM. This is probably 

because the item-level PSEM is more personalized for a specific individual examinee (assuming 

the data fit the selected IRT model). The item-level PSEM adjusts for item difficulties at the 

examinee level by computing the pi for each test item only for examinees at the same ability level 

as the target examinee. However, the conditional relative SEM adjusts for the item difficulties that 

are estimated from all examinees in the sample. It uses only one estimate of item difficulty for all 

examinees. 

In addition, there is a possibility of invalidly high values of conditional relative SEM 

caused by the nature of the estimate by itself. For example, if an examinee with ax  = 0.05 guesses 

correctly the answer to an item with ix  = 0.342 while x  = 0.636 for the test form, then the value of 

the term in the conditional relative SEM for this item is 

(1 - 0.05 - 0.342 + 0.636)
2
 = (1 + 0.244)

2
 = (1.244)

2
 = 1.5475. 

This value is outside the range of valid values for a term that ranges between 0 and 1. Only one 

such item is sufficient to cause the conditional relative SEM to overestimate the examinee-level 

SEM. On the other hand, this issue cannot arise with the item-level PSEM because values for pi 

range between 0 and 1 regardless of how difficult items are or how able the examinee is. This 
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could explain the result presented in Figure 2 where the conditional relative SEM had a higher 

average than the item-level PSEM at all total-correct scores, especially for low and high 

total-correct scores. 

Similarly, the subtest-level PSEM behaved in the same way as the relative modified 

Thorndike within-person SEM (Equation 13). Again, it is expected (using the same arguments as 

before) that more individuals would have values of subtest-level PSEM smaller than those of the 

relative modified Thorndike within-person SEM. However, in the data set used here, there were 

only 53.5, 45.5, and 47.9 percent of such individuals for 1PL, 2PL, and 3PL models. This could be 

explained by the small differences among the mean difficulties of the three subtests. Inspection of 

Equation 13 shows that variation in subtest difficulties (in Equation 13) would increase the size of 

the SEM.
2 

Of course, the major limitation of the subtest-level method is that each PSEM is typically 

estimated from a small number of subtest scores. With more subtests and more items in each, one 

gets a more stable (and generally smaller) estimate of error. Thus, one important topic for future 

research is how best to effect partitioning of an item string into test parts, given different 

assumptions about the source and magnitude of errors. But it does not follow that a more stable or 

smaller estimate of error is a better estimate of error. For any fixed collection of items that has been 

scaled, the vector of item scores for each examinee has an observed deviation from the response 

probabilities predicted by the model. If the scores on the test are generally well fit by the scaling 

model, then these deviations will be small and normally distributed. However, when systematic 

errors attach to particular items for some examinees and not others, then the error distributions will 

be skewed—especially if the partitioning of items into subtests sorts them into categories that 

capture these systematic errors. Without such partitioning, systematic errors are scattered 
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throughout the item set and treated as random error. But whether the deviations from the IRT 

model can be modeled as random events or are ascribed to a more systematic source, they are a fact 

of life for a particular examinee’s responses on a given test. Further, as was shown for the CogAT 

data, if the subtests are of at least moderate length and all do in fact measure the same construct, 

then the subtest-level PSEMs can be quite useful in detecting deviations from the scaling model. 

Subtest-level PSEM’s can also be quite useful in signaling variation among subscores on 

achievement tests that report performance on clusters of items defined by particular objectives, or 

among subtests that are combined to create larger composites.  For example, Language Usage 

composite scores are commonly defined by performance on spelling, capitalization, punctuation, 

and usage/expression subtests.  Computation of a subtest-level PSEM would allow construction of 

a confidence interval around the composite Language Usage score that would caution 

interpretation for examinees who display unusual patterns of scores across subtests that are 

combined to form the composite. Such composite scores are surely less generalizable than the 

composites for individuals who behave more consistently across subtests. 

Further, both item-level and subtest-level PSEMs can also be interpreted in the context of 

person fit analysis. Both estimates of PSEM quantify the amount of aberrance in examinee’s 

responses from the expectations of the IRT model and thus can be used to detect person misfit. For 

example, a large increment to the item-level PSEM is obtained every time the examinee responds 

to an item i differently from the prediction of the IRT model that is quantified by pi. Since the IRT 

SEM is the expected value of both the item-level PSEM and subtest-level PSEM, the unusualness 

of a given PSEM can easily be determined by comparing it to the IRT SEM at that score level. By 

obtaining the variance of the square of item-level PSEM (personal error variance), Al-Mahrazi 

(2003) developed and investigated two versions of a person fit index that compares the estimate of 



 27 

item-level personal error variance to the IRT error variance. Al-Mahrazi (2003) found that this 

new person fit index that employs the item-level personal error variance performed better than 

Wright’s (1977) mean square statistics and performed similar to or even better than the 

standardized likelihood index of Drasgow, Levine, & Williams (1985). 

Nevertheless, there is an important difference between procedures described in this paper 

for estimating personal SEMs—and thus enabling the construction of confidence intervals around 

reported scores—and procedures for detecting person misfit in IRT models. Operational testing 

programs typically do not have the luxury of not reporting scores for examinees whose responses 

do not fit the scaling model. Drawing a bright line between fit and misfit seems to distort the 

continuous variation in misfit that is typically observed. Indices of model fit and confidence 

intervals also have different implications for score interpretation. Confidence intervals allow the 

user to judge how much scores are likely to vary on retest; model fit indices do not inform such 

judgments. Confidence intervals also allow more direct inferences about the reliability of observed 

differences in score profiles. Indeed, it was the search for better ways to caution users about large 

but unreliable differences among scores on the three CogAT batteries that lead to these methods. 
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Footnotes 

1
Biased estimators are used with all estimates of SEM in the classical test theory 

framework in order to allow a direct comparison with estimates of SEM in IRT framework.
 

2
Similarly, variation in item difficulties (in Equation 7) increases the size of the conditional 

relative error variance over the corresponding IRT-based estimate given in Equation 4.
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Table 1 

Summary descriptive of the difficulties of items and subtests on the CogAT Vocabulary Test. 

 Min Max Average Variance Sum of Squares 

Item-Level
a
 0.342 0.932 0.6363 0.0254 1.6268 

Subtest-Level
b
 0.605 0.674 0.6363 0.0012 (0.5851) 0.0024 (1.1703) 

a
 n = 65.                         

b 
3 subtests: n1 = 20, difficulty = 0.6382; n2 = 20, difficulty = 0.6736; n3 = 25, difficulty = 0.6050. 

Values in the parentheses are obtained using the scales of subtests’ total-correct scores.  

 

Table 2 

Summary Results of Various Estimates of Conditional Standard Error of Measurement 

Estimate and Model
a 

Min Max Average 

Item    

1PL 0.077 4.486 3.222 

2PL 0.236 4.422 3.202 

3PL 0.130 4.469 3.193 

Subtest    

1PL 0.102 16.669 3.762 

2PL 0.117 16.596 3.786 

3PL 0.054 16.392 3.786 

IRT    

1PL 0.685 3.657 3.230 

2PL 0.799 3.676 3.220 

3PL 0.693 3.632 3.207 

SEM estimates from classical test theory   

Rel 1.275 4.329 3.256 

Lord 0.000 4.031 3.497 

Thornd 0.000 17.146 4.246 

Mod Thornd 0.000 16.690 3.942 

Rel Mod Thornd 0.220 16.793 3.791 

Notes. Item = item-level personal standard error of measurement (PSEM); Subtest = Subtest-level 

PSEM; CTT = classical test theory; IRT = item response theory SEM; Rel = Jarjoura’s SEM; 

Thornd = Thorndike’s SEM; Mod Thornd = modified Thorndike’s within-person SEM; Rel Mod 

Thornd = relative modified Thorndike’s within-person SEM.  

a
n = 12,242 
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Table 3 

Intercorrelations among Various Estimates of Conditional Standard Error of Measurement 

 
Item 

 
IRT 

 
Subtest 

    
 

 1PL 2PL 3PL 1PL 2PL 3PL 1PL 2PL 3PL 

Item                 

1PL                 

2PL 0.994                

3PL 0.991 0.998               

IRT                 

1PL 0.932                

2PL  0.945   0.989            

3PL   0.922  0.967 0.984           

Subtest                 

1PL 0.429    0.391            

2PL  0.441    0.411   0.985        

3PL   0.433    0.411  0.968 0.983       

Rel 0.992 0.989 0.986  0.934 0.941 0.917  0.430 0.431 0.422      

Lord 0.934 0.937 0.937  0.998 0.991 0.970  0.396 0.403 0.394  0.940    

Thornd 0.132 0.139 0.139  0.070 0.063 0.025  0.764 0.766 0.738  0.132 0.073   

Mod Thornd 0.418 0.426 0.422  0.421 0.422 0.423  0.920 0.913 0.891  0.423 0.425 0.573  

Rel Mod Thornd 0.408 0.415 0.412  0.379 0.384 0.379  0.990 0.986 0.957  0.414 0.384 0.765 0.931 

Notes. Item = item-level personal standard error of measurement (PSEM); Subtest = Subtest-level PSEM; IRT = item response theory SEM; Rel = Jarjoura’s SEM; 

Thornd = Thorndike’s SEM; Mod Thornd = modified Thorndike’s within-person SEM; Rel Mod Thornd = relative modified Thorndike’s within-person SEM.  

a
n = 12,242 
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Figure Captions 

Figure 1. Scatterplots of item-level PSEMs (top three panels) and subtest-level PSEMs (bottom 

three panels), by IRT model. Open circles show the item-level PSEM at each true score level; open 

squares show the IRT SEM at each true score level. 

Figure 2. Average item-level SEM at each total-correct score by IRT model and type of estimate. 

Each plot compares four item-level estimates: ITEM = proposed item-level PSEM,  

IRT = IRT Conditional SEM, LORD = Lord’s (1955) SEM, and REL. SEM = Jarjoura’s SEM.  

Figure 3.  Average subtest-level SEM at each total-correct score by IRT model and type of 

estimate.  Each plot compares the four subtest-level estimates. The IRT SEM is plotted for 

reference. SUB = proposed subtest-level PSEM, THORND = original Thorndike (1951) SEM, 

MOD.THORND = Thorndike SEM modified to allow subtests of different length, and  

REL. MOD.THORND = the Thorndike SEM modified to allow subtests of different length and 

different difficulties. 
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